Lecture 2 | A distance function on reproducing kernel Hilbert spaces | Richard Rochberg | Лекториум
470
78.3
Лекториум194 тыс
Следующее
Опубликовано 10 декабря 2014, 11:32
Lecture 2 | Курс: Workshop and Winter School «Spaces of Analytic Functions and Singular Integrals (SAFSI2014)» | Лектор: Richard Rochberg | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: lektorium.tv/lecture/25622
Given H, a reproducing kernel Hilbert space of functions on X; the operator norm distance between reproducing kernels induces a metric on X. This metric arises naturally when quantifying properties of H, and in some cases determines H completely. I will give some background about this metric, discuss places where it is useful, and mention open questions. Specific subjects include interpolating sequences, the maximal ideal space of the multiplier algebra, and isometric embedding of X into hyperbolic balls.
Подписывайтесь на канал: lektorium.tv/ZJA
Следите за новостями:
vk.com/openlektorium
facebook.com/openlektorium
Смотрите это видео на Лекториуме: lektorium.tv/lecture/25622
Given H, a reproducing kernel Hilbert space of functions on X; the operator norm distance between reproducing kernels induces a metric on X. This metric arises naturally when quantifying properties of H, and in some cases determines H completely. I will give some background about this metric, discuss places where it is useful, and mention open questions. Specific subjects include interpolating sequences, the maximal ideal space of the multiplier algebra, and isometric embedding of X into hyperbolic balls.
Подписывайтесь на канал: lektorium.tv/ZJA
Следите за новостями:
vk.com/openlektorium
facebook.com/openlektorium
Свежие видео
Случайные видео