Лекториум194 тыс
Опубликовано 7 октября 2013, 20:00
Class field theory for singular schemes over finite fields | Лектор: Thomas Geisser | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: lektorium.tv/lecture/14633
A classical theorem states that the Galois group of the maximal abelian unramified extension of a number field is isomorphic to the class group of the number field. A similar statement holds for global fields of finite characteristic, giving the automorphism group of the maximal abelian etale covering of a smooth and proper curve.This has been generalized by Bloch and Kato-Saito to smooth and proper schemes of any dimension, and further generalized by Spiess-Schmidt to smooth schemes. We discuss a further generalization to arbitrary schemes.
Подписывайтесь на канал: lektorium.tv/ZJA
Следите за новостями:
vk.com/openlektorium
facebook.com/openlektorium
Смотрите это видео на Лекториуме: lektorium.tv/lecture/14633
A classical theorem states that the Galois group of the maximal abelian unramified extension of a number field is isomorphic to the class group of the number field. A similar statement holds for global fields of finite characteristic, giving the automorphism group of the maximal abelian etale covering of a smooth and proper curve.This has been generalized by Bloch and Kato-Saito to smooth and proper schemes of any dimension, and further generalized by Spiess-Schmidt to smooth schemes. We discuss a further generalization to arbitrary schemes.
Подписывайтесь на канал: lektorium.tv/ZJA
Следите за новостями:
vk.com/openlektorium
facebook.com/openlektorium
Свежие видео
Случайные видео
РУКА ГОСПОДА смахивает и разрушает цепи! Со святым огнем приходит исцеление! «Это сверхъестественно»