Amazon Web Services776 тыс
Следующее
Опубликовано 12 октября 2015, 18:08
Conceptually, a data lake is a flat data store to collect data in its original form, without the need to enforce a predefined schema. Instead, new schemas or views are created “on demand”, providing a far more agile and flexible architecture while enabling new types of analytical insights. AWS provides many of the building blocks required to help organizations implement a data lake. In this session, we will introduce key concepts for a data lake and present aspects related to its implementation. We will discuss critical success factors, pitfalls to avoid as well as operational aspects such as security, governance, search, indexing and metadata management. We will also provide insight on how AWS enables a data lake architecture.
A data lake is a flat data store to collect data in its original form, without the need to enforce a predefined schema. Instead, new schemas or views are created ""on demand"", providing a far more agile and flexible architecture while enabling new types of analytical insights. AWS provides many of the building blocks required to help organizations implement a data lake. In this session, we introduce key concepts for a data lake and present aspects related to its implementation. We discuss critical success factors and pitfalls to avoid, as well as operational aspects such as security, governance, search, indexing, and metadata management. We also provide insight on how AWS enables a data lake architecture. Attendees get practical tips and recommendations to get started with their data lake implementations on AWS.
A data lake is a flat data store to collect data in its original form, without the need to enforce a predefined schema. Instead, new schemas or views are created ""on demand"", providing a far more agile and flexible architecture while enabling new types of analytical insights. AWS provides many of the building blocks required to help organizations implement a data lake. In this session, we introduce key concepts for a data lake and present aspects related to its implementation. We discuss critical success factors and pitfalls to avoid, as well as operational aspects such as security, governance, search, indexing, and metadata management. We also provide insight on how AWS enables a data lake architecture. Attendees get practical tips and recommendations to get started with their data lake implementations on AWS.
Свежие видео
How do I fix the error “canceling statement due to conflict with recovery” for a read replica query?