Understanding Over-parametrization Through Matrix Sensing

1 584
35.2
Следующее
Популярные
01.02.23 – 13 1692:00
Seeing AI app - Indoor Navigation
Опубликовано 25 января 2018, 17:50
We study the problem of recovering a low-rank matrix from linear measurements using an over-parameterized model. We show that the gradient descent process on the square loss function, starting from a small initialization, can converge to the ground truth matrix. Although the total number of observations is much smaller than the total number of parameters.

See more at microsoft.com/en-us/research/v...
автотехномузыкадетское