Amazon Web Services776 тыс
Опубликовано 10 апреля 2018, 23:02
As the volume and types of data continues to grow, customers often have valuable data that is not easily discoverable and available for analytics. A common challenge for data engineering teams is architecting a data lake that can cater to the needs of diverse users - from developers to business analysts to data scientists.
In this session, we will dive deep into building a data lake using Amazon S3, Amazon Kinesis, Amazon Athena and AWS Glue. We will also see how AWS Glue crawlers can automatically discover your data, extracting and cataloguing relevant metadata to reduce operations in preparing your data for downstream consumers.
Furthermore, learn from our customer Spuul, on how they moved from a Data Warehouse based analytics to a serverless data lake. Why and how did Spuul undertake this journey? Hear about the benefits and challenges they encountered.
Speaker
- Unni Pillai, Specialist Solution Architect, ASEAN, AWS
AWS Customer Speaker
- Daniel Muller, Head of Cloud Infrastructure, Spuul
In this session, we will dive deep into building a data lake using Amazon S3, Amazon Kinesis, Amazon Athena and AWS Glue. We will also see how AWS Glue crawlers can automatically discover your data, extracting and cataloguing relevant metadata to reduce operations in preparing your data for downstream consumers.
Furthermore, learn from our customer Spuul, on how they moved from a Data Warehouse based analytics to a serverless data lake. Why and how did Spuul undertake this journey? Hear about the benefits and challenges they encountered.
Speaker
- Unni Pillai, Specialist Solution Architect, ASEAN, AWS
AWS Customer Speaker
- Daniel Muller, Head of Cloud Infrastructure, Spuul
Свежие видео
Случайные видео