Microsoft Research336 тыс
Опубликовано 6 сентября 2018, 14:20
Matrix completion is a well-studied problem with many machine learning applications. In practice, the problem is often solved by non-convex optimization algorithms. However, the current theoretical analysis for non-convex algorithms relies heavily on the assumption that every entry is observed with exactly the same probability p, which is not realistic in practice.
In this paper, we investigate a more realistic semi-random model, where the probability of observing each entry is at least p. Even with this mild semi-random perturbation, we can construct counter-examples where existing non-convex algorithms get stuck in bad local optima.
In light of the negative results, we propose a pre-processing step that tries to re-weight the semi-random input, so that it becomes "similar" to a random input. We give a nearly-linear time algorithm for this problem, and show that after our pre-processing, all the local minima of the non-convex objective can be used to approximately recover the underlying ground-truth matrix.
This is joint work with Rong Ge.
See more at microsoft.com/en-us/research/v...
In this paper, we investigate a more realistic semi-random model, where the probability of observing each entry is at least p. Even with this mild semi-random perturbation, we can construct counter-examples where existing non-convex algorithms get stuck in bad local optima.
In light of the negative results, we propose a pre-processing step that tries to re-weight the semi-random input, so that it becomes "similar" to a random input. We give a nearly-linear time algorithm for this problem, and show that after our pre-processing, all the local minima of the non-convex objective can be used to approximately recover the underlying ground-truth matrix.
This is joint work with Rong Ge.
See more at microsoft.com/en-us/research/v...
Свежие видео
Случайные видео