Summer Number Theory Day; Session 4 - Derivatives of $p$-adic $L$-functions

360
24
Опубликовано 12 августа 2016, 2:03
We will discuss a new approach to proving the Ferrero-Greenberg formula for the derivative of a Kubota-Leoplodt $p$-adic $L$-function at $s=0$. The aim is to provide a proof which uses two-variable $p$-adic $L$-functions in a manner analogous to the Greenberg-Stevens proof of the Mazur-Tate-Teitelbaum conjecture for elliptic curves. In the Kubota-Leopldt setting, we use the Katz two-variable $p$-adic $L$-function attached to an imaginary quadratic field $K$. This is joint work with Ralph Greenberg and Shaowei Zhang.
Случайные видео
149 дней – 2 7270:40
How to win a DeLorean
23.05.22 – 106 6740:53
Introducing: AMD Privacy View
автотехномузыкадетское