Infrastructure at Scale: Apache Kafka, Twitter Storm & Elastic Search (ARC303) | AWS re:Invent 2013
24 754
70.5
Amazon Web Services776 тыс
Опубликовано 29 ноября 2013, 22:22
This is a technical architect's case study of how Loggly has employed the latest social-media-scale technologies as the backbone ingestion processing for our multi-tenant, geo-distributed, and real-time log management system. This presentation describes design details of how we built a second-generation system fully leveraging AWS services including Amazon Route 53 DNS with heartbeat and latency-based routing, multi-region VPCs, Elastic Load Balancing, Amazon Relational Database Service, and a number of pro-active and re-active approaches to scaling computational and indexing capacity.
The talk includes lessons learned in our first generation release, validated by thousands of customers; speed bumps and the mistakes we made along the way; various data models and architectures previously considered; and success at scale: speeds, feeds, and an unmeltable log processing engine.
The talk includes lessons learned in our first generation release, validated by thousands of customers; speed bumps and the mistakes we made along the way; various data models and architectures previously considered; and success at scale: speeds, feeds, and an unmeltable log processing engine.
Свежие видео
Случайные видео