Microsoft Research334 тыс
Опубликовано 17 января 2020, 17:27
Performing well on standardized exams has been a longstanding challenge for AI. Even in 2016, the best AI system achieved less than 60% on an 8th Grade science exam challenge. Recently, AI2's Aristo system achieved surprising success on the Grade 8 New York Regents Science Exams, scoring over 90% on the exam's non-diagram, multiple choice (NDMC) questions. How was it able to do this, and what mistakes does it still make? In this talk, I will overview Aristo and the impact of its various components, in particular, its new language model (LM) solvers. I will also present several analyses of what is going on inside Aristo, in particular probing how much the LM solvers go beyond simple pattern matching, and what kinds of errors still occur. Finally, I will speculate on the larger quest towards knowledgeable machines that can reason, explain, and interact, and what additional capabilities are needed to reach this broader goal.
Talk slides: microsoft.com/en-us/research/u...
See more on this and other talks at Microsoft Research: microsoft.com/en-us/research/v...
Talk slides: microsoft.com/en-us/research/u...
See more on this and other talks at Microsoft Research: microsoft.com/en-us/research/v...
Свежие видео
Случайные видео
How to easily find new content ideas for your social media using Gemini for Google Workspace #Shorts