Build AI-powered apps on Google Cloud with pgvector, LangChain & LLMs

33 061
13.7
Следующее
26.06.23 – 1 6980:45
New cloud series and blogs!
Популярные
74 дня – 3 7144:48
What are text embeddings?
80 дней – 4 8393:27
Gemini for Developers - RAG
Опубликовано 26 июня 2023, 15:00
Make a copy of the Colab notebook → goo.gle/3XrZUn5
Read the launch blog → goo.gle/3CKgzZN
Read the demo blog → goo.gle/3XpFPxH

Showcasing various features of the Postgres extension pgvector, see an example of how you can extend your database application to build AI-powered experiences using LangChain and LLM. The pgvector extension can manage vector embeddings directly within your Cloud SQL and AlloyDB databases, making integrating Generative AI capabilities within your Postgres-powered applications easier. In this demo, we use Google's PaLM models powered by VertexAI.

Chapters:
0:00 - Intro
0:30 - Vector embeddings defined
1:04 - pgvector support
1:22 - Demo summary
2:24 - Demo start
7:24 - Conclusion

Subscribe to Google Cloud Tech → goo.gle/GoogleCloudTech

#Databases #GenerativeAI #pgvector
автотехномузыкадетское