Crossing the Chasm: Patterns to Develop, Operationalize, and Maintain ML Models (Cloud Next '18)
1 257
34.9
Google Cloud Platform1.17 млн
Следующее
Опубликовано 25 июля 2018, 18:14
In many organizations, data scientists develop machine learning models and data/ML engineers put them into production. The chasm between the two roles leads to many difficulties in moving models from development into production. These difficulties make it extremely difficult to maintain and enhance those models, a key requirement if ML models are used to drive the business. We describe four key concepts to keep in mind as you develop and operationalize machine learning models, and present a number of solutions (“patterns”) to realize these four concepts in practice.
Event schedule → g.co/next18
Watch more Machine Learning & AI sessions here → bit.ly/2zGKfcg
Next ‘18 All Sessions playlist → bit.ly/Allsessions
Subscribe to the Google Cloud channel! → bit.ly/NextSub
re_ty: Publish; product: Cloud - General; fullname: Yufeng Guo, Valliappa Lakshmanan; event: Google Cloud Next 2018;
Event schedule → g.co/next18
Watch more Machine Learning & AI sessions here → bit.ly/2zGKfcg
Next ‘18 All Sessions playlist → bit.ly/Allsessions
Subscribe to the Google Cloud channel! → bit.ly/NextSub
re_ty: Publish; product: Cloud - General; fullname: Yufeng Guo, Valliappa Lakshmanan; event: Google Cloud Next 2018;
Случайные видео