Towards a Theory for Sample-efficient Reinforcement Learning with Rich Observations

1 867
28.3
Следующее
18.09.18 – 3 18222:24
Fireside Chat with Cynthia Dwork
Популярные
Опубликовано 18 сентября 2018, 15:49
How can we tractably solve sequential decision making problems where the learning agent receives rich observations? We begin with a new model called Contextual Decision Processes (CDPs) for studying such problems, and show that it encompasses several prior setups to study RL such as MDPs and POMDPs. Several special cases of CDPs are, however, known to be provably intractable in their sample complexities. To overcome this challenge, we further propose a structural property of such processes, called the Bellman Rank. We find that the Bellman Rank of a CDP (and an associated class of functions) provides an intuitive measure of the hardness of a problem in terms of sample complexity and is small in several practical settings. In particular, we propose an algorithm, whose sample complexity scales with the Bellman Rank of the process, and is completely independent of the size of the observation space of the agent. We also show that our techniques are robust to our modeling assumptions, and make connections to several known results as well as highlight novel consequences of our results.

Finally, we also discuss the computational difficulties which arise in operationalizing the resulting methods and directions for further progress.

See more at microsoft.com/en-us/research/v...
Свежие видео
6 дней – 330 91916:48
Best TV for PS5 Pro!
13 дней – 27 4581:00
Love is in the AIr with Samsung Health
20 дней – 6 4070:26
Phone link on Xiaomi 14T Series
199 дней – 3 7186:51
Cloud Run Jobs overrides
автотехномузыкадетское