LLMs vs SLMs: A developer's guide + NVIDIA insights

5 321
13.2
Следующее
197 дней – 4 4306:39
Cloud AI: it's just an API
Популярные
56 дней – 12 3757:39
Connecting ADK Agents to MCP Servers
Опубликовано 18 июня 2025, 16:02
Explore the world of Large Language Models (LLMs) and Small Language Models (SLMs) with insights from NVIDIAs Jay! In this episode, we break down when to use each type of model, discuss the crucial role of guardrails, and dive into optimization techniques like quantization. Learn about the latest hardware (NVIDIAa GeForce RTX 50 Series) and open-source frameworks (NeMo Framework, TensorRT-LLM) empowering developers to build cutting-edge AI applications locally

Chapters:
0:00 - Introduction: Real Terms with AI & NVIDIA
0:31 - Adding AI - What is the Use Case?
1:20 - Starting with the use case
1:41 - Open Source tools
2:06 - NVIDIA’s NeMo Framework & Hugging Face
2:20 - Small Language Models (SLMs) explained
3:35 - Advantages of SLMs: local runnability & latency
4:18 - When NOT to Use an SLM: accuracy considerations
5:33 - What guardrails are?
6:50 - Trade-offs & the key factors
7:10 - Optimization basics
7:30 - Good Open Source Tools
8:58 - New NVIDIA RTX GeForce 50 Series hardware and its impact
10:08 - Al powered coding assistance

Watch more Real Terms for AI → goo.gle/AIwordsExplained
Subscribe to Google Cloud Tech → goo.gle/GoogleCloudTech

#GoogleCloud #GenerativeAI

Speakers: Aja Hammerly, Jason Davenport, Jay Rodge
Products Mentioned: AI Infrastructure, Gemini
автотехномузыкадетское