Microsoft Research334 тыс
Опубликовано 27 июня 2016, 20:25
High dimensional single cell technologies are on the rise, rapidly increasing in accuracy and throughput. These offer computational biology both a challenge and an opportunity. One of the big challenges with this data-type is to understand regions of density in this multi-dimensional space, given millions of noisy measurements. Underlying many of our approaches is mapping this high-dimensional geometry into a nearest neighbor graph and characterization single cell behavior using this graph structure. We will discuss a number of approaches (1) An algorithm that harnesses the nearest neighbor graph to order cells according to their developmental maturity and its use to identify novel progenitor B-cell sub-populations. (2) Using reweighted density estimation to characterize cellular signal processing in T-cell activation. (2) New clustering and dimensionality reduction approaches to map heterogeneity between cells; with an application to characterizing tumor heterogeneity in Acute Myeloid Leukemia.