Microsoft Research334 тыс
Опубликовано 12 августа 2016, 2:04
We show how certain random projections and random sampling methods can be used to design efficient dimensionality reduction techniques for two popular machine learning problems: (i) K-means Clustering, and (ii) Canonical Correlation Analysis. In both cases, we argue that randomized dimensionality reduction is provably efficient.
Свежие видео
Случайные видео
OUKITEL - Black Friday deals are here! Grab the stylish OUKITEL P1 at an unbeatable price!” #oukitel