How to build Multimodal Retrieval-Augmented Generation (RAG) with Gemini

68 878
15.5
Опубликовано 16 мая 2024, 14:05
The saying ""a picture is worth a thousand words"" encapsulates the immense potential of visual data. But most retrieval-augmented generation (RAG) applications rely only on text. This session applies RAG to multimodal use cases. It focuses on embeddings and attributed question answering to retrieve data. We’ll begin with a high-level architecture and quickly dive into a practical demo. Attendees will learn to create powerful LLM-based workflows and embed them in existing applications.

Speakers: Shilpa Kancharla, Jeff Nelson

Resources:
Try Gemini in Vertex AI → goo.gle/3Vttolh

Watch more:
Check out all the AI videos at Google I/O 2024 → goo.gle/io24-ai-yt
Check out all the Cloud videos at Google I/O 2024 → goo.gle/io24-cloud-yt

Subscribe to Google Developers → goo.gle/developers

#GoogleIO


Event: Google I/O 2024
Products Mentioned: Gemini
Случайные видео
294 дня – 4 9610:48
Has() selector #shorts
17.01.21 – 719 5157:59
What's inside Amazon Returns?
автотехномузыкадетское