Look Ma, no markers: holistic performance capture without the hassle

29 235
7.3
Опубликовано 17 октября 2024, 15:35
We tackle the problem of highly-accurate, holistic performance capture for the face, body and hands simultaneously. Motion-capture technologies used in film and game production typically focus only on face, body or hand capture independently, involve complex and expensive hardware and a high degree of manual intervention from skilled operators. While machine-learning-based approaches exist to overcome these problems, they usually only support a single camera, often operate on a single part of the body, do not produce precise world-space results, and rarely generalize outside specific contexts. In this work, we introduce the first technique for marker-free, high-quality reconstruction of the complete human body, including eyes and tongue, without requiring any calibration, manual intervention or custom hardware. Our approach produces stable world-space results from arbitrary camera rigs as well as supporting varied capture environments and clothing. We achieve this through a hybrid approach that leverages machine learning models trained exclusively on synthetic data and powerful parametric models of human shape and motion. We evaluate our method on a number of body, face and hand reconstruction benchmarks and demonstrate state-of-the-art results that generalize on diverse datasets.

See the project page for more details and dataset download instructions: aka.ms/synthmocap
Свежие видео
4 дня – 35940:23
Tech Winter Horizon
7 дней – 7 7840:20
#XiaomiImageryAwards2024 Last Call
197 дней – 52 069 1040:31
Google — Say hi to Gemini
автотехномузыкадетское